Ir para conteúdo
  • Cadastre-se

Posts Recomendados

  • 2 meses depois...

Publicidade

Postado
Em 11/09/2015 at 13:19, Shrödinger disse:

Andei pesquisando sobre as possíveis vantagens de se ter as reservas de glicogênio cheias para a hipertrofia - além do que o Lyle escreve no livro.

 

Em um paper do Brad sobre mecanismos da hipertrofia encontrei algo interessante.

 

Sabe-se que cada grama de glicogênio armazenado leva junto três gramas de água. Assim, com o enchimento das reservas de glicogênio o músculo fica inchado e hidratado.

 
A hidratação e consequente inchaço da célula provoca um esticamento/estiramento/alongamento (stretch) da célula muscular, que aumenta a pressão contra a membrana, o que é entendido como uma ameaça a integridade da célula. Como resposta, é iniciada a sinalização de que é necessário o reforço de sua estrutura. Com isso, há um aumento tanto na síntese proteica quanto na redução da proteólise.
 
Segue trecho do paper Mechanisms of Muscle Hypertrofy:
 
"Exercise regimens that cause an increased glycogen storage
capacity also have the potential to augment cell swelling.
Given that glycogen attracts three grams of water for every
gram of glycogen (25), this may reflect an increased capacity
for protein synthesis in those who possess greater intramuscular
glycogen stores."
 
A UD2 provoca não apenas a repleção das reservas de glicogênio, mas sua supercompensação. Com isso, o inchaço tende a ser ainda maior, desencadeando uma sinalização que tende a aumentar a síntese proteica e reduzir a proteólise em níveis superiores aos normais.
 
(Vale ressaltar que este é apenas um dos mecanismos de hipertrofia)
 
Abraços
 
 
 
 

Fala Shrödinger tudo bom ? 

Com Base no que voce citou no texto acima 

Pump tambem tem seu lugar  , Oque eu gosto de utilizar muito é a combinaçao Creatina + Glicerina Diluido em 2 l de agua 1h 30 Min antes do treino  , Ja Ouviu falar ? O Pump fica absurdamente maior pois segundo a teoria a glicerina junto da creatina mandaria Muitoooo mais agua Para as celulas musculares aumentado o Pump Demais ! Se nao me egano os americanos chamam de Cell Volumizer 

Isso seria benefico para hipertrofia tambem ? Eu Costumo Utilizar em um treino ou outro !

Desde ja Obrigado  

  • Supermoderador
Postado
1 hora atrás, DarkZin09 disse:

Fala Shrödinger tudo bom ? 

Com Base no que voce citou no texto acima 

Pump tambem tem seu lugar  , Oque eu gosto de utilizar muito é a combinaçao Creatina + Glicerina Diluido em 2 l de agua 1h 30 Min antes do treino  , Ja Ouviu falar ? O Pump fica absurdamente maior pois segundo a teoria a glicerina junto da creatina mandaria Muitoooo mais agua Para as celulas musculares aumentado o Pump Demais ! Se nao me egano os americanos chamam de Cell Volumizer 

Isso seria benefico para hipertrofia tambem ? Eu Costumo Utilizar em um treino ou outro !

Desde ja Obrigado  

PUMP é algo apenas estetico. É como veias dilatadas.

Postado
1 hora atrás, busarello disse:

PUMP é algo apenas estetico. É como veias dilatadas.

Depende , leia o texto q citei do shrodinger falando sobre a importância do pump , Pump tem o seu lugar sim

Postado
15 horas atrás, DarkZin09 disse:

Fala Shrödinger tudo bom ? 

Com Base no que voce citou no texto acima 

Pump tambem tem seu lugar  , Oque eu gosto de utilizar muito é a combinaçao Creatina + Glicerina Diluido em 2 l de agua 1h 30 Min antes do treino  , Ja Ouviu falar ? O Pump fica absurdamente maior pois segundo a teoria a glicerina junto da creatina mandaria Muitoooo mais agua Para as celulas musculares aumentado o Pump Demais ! Se nao me egano os americanos chamam de Cell Volumizer 

Isso seria benefico para hipertrofia tambem ? Eu Costumo Utilizar em um treino ou outro !

Desde ja Obrigado  

 

Fala Darkzin!

 

Cara, o pump é positivo pra hipertrofia por conta desse processo de inchaço da célula descrito no post acima. Se esse troço que vc usa aumenta o pump, deve ser positivo. Entretanto, deve ser apenas um complemento, visto que tensão mecânica aliado a um volume adequado deve ser o foco do treino.

 

Dê uma lida nessa tradução da Fabi:

 

 

Abraço

  • 1 ano depois...
Postado (editado)

INICIEI U D 2 ONTEM 15/05/17!

 

Deixarei relatos aqui para futuros usuarios...

INFORMAÇÕES DO MEU PERFIL:

1,79m

Peso 14/05/17 - 79,5 KG.

BF - 11%

 

SEGUNDA

''Dieta foi tranquila... 1300 kcal, 30g carb, 150 protein, 30 gord..., senti muita vontade de comer algum carbo solido, porém estou focado...''

''Treino foi puxado... Deixei pra treinar durante a noite pois eu havia comido uma quantidade boa de carbo no domingo, assim, meu corpo teria menos glicogenio até a hr do treino... Foi dificil fazer todos os exercícios com perfeição. Fiz um treino Upper... mas foi valido''

''Psicologico: Me senti um pouco ''fraco/cansado/desanimado'', mas provavelmente é efeito do baixo consumo de carb...''

 

TERÇA

''Dieta 1200 kcal, 32 carb, 182 prot, 21 gord..., estou morrendo de vontade de comer um macarrão/pão...''

''Treino hard... Muita queimação durante o treino de pernas, principalmente na panturrilha... sem contar o curacao desparando a todo esforço...''

''Psicologico :/, muita vontade de desistir, mas ao mesmo tempo já consigo ver pequenas mudanças e isso me da forças para continuar...''

Editado por LincolnAndrade
Postado
10 minutos atrás, Shrödinger disse:

A ingestão de proteínas tá baixa pra esse déficit todo. Eu tentaria pelo menos 200g nos 3 primeiros dias da semana.

Sim, eu estou tentando isso, ontem foi só um acaso que não consegui.. geralmente eu consigo 180 a 210g... Cheguei tarde ontem e só queria dormir, ai não preparei uma janta proteica kkkk

  • 2 anos depois...
  • 5 meses depois...
Postado
42 minutos atrás, krebz disse:

Glycogen repletion

A primary goal of traditional post-workout nutrient timing recommendations is to replenish glycogen stores. Glycogen is considered essential to optimal resistance training performance, with as much as 80% of ATP production during such training derived from glycolysis [6]. MacDougall et al. [7] demonstrated that a single set of elbow flexion at 80% of 1 repetition maximum (RM) performed to muscular failure caused a 12% reduction in mixed-muscle glycogen concentration, while three sets at this intensity resulted in a 24% decrease. Similarly, Robergs et al. [8] reported that 3 sets of 12 RM performed to muscular failure resulted in a 26.1% reduction of glycogen stores in the vastus lateralis while six sets at this intensity led to a 38% decrease, primarily resulting from glycogen depletion in type II fibers compared to type I fibers. It therefore stands to reason that typical high volume bodybuilding-style workouts involving multiple exercises and sets for the same muscle group would deplete the majority of local glycogen stores.

In addition, there is evidence that glycogen serves to mediate intracellular signaling. This appears to be due, at least in part, to its negative regulatory effects on AMP-activated protein kinase (AMPK). Muscle anabolism and catabolism are regulated by a complex cascade of signaling pathways. Several pathways that have been identified as particularly important to muscle anabolism include mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and various calcium- (Ca2+) dependent pathways. AMPK, on the other hand, is a cellular energy sensor that serves to enhance energy availability. As such, it blunts energy-consuming processes including the activation of mTORC1 mediated by insulin and mechanical tension, as well as heightening catabolic processes such as glycolysis, beta-oxidation, and protein degradation [9]. mTOR is considered a master network in the regulation of skeletal muscle growth [1011], and its inhibition has a decidedly negative effect on anabolic processes [12]. Glycogen has been shown to inhibit purified AMPK in cell-free assays [13], and low glycogen levels are associated with an enhanced AMPK activity in humans in vivo[14].

Creer et al. [15] demonstrated that changes in the phosphorylation of protein kinase B (Akt) are dependent on pre-exercise muscle glycogen content. After performing 3 sets of 10 repetitions of knee extensions with a load equating to 70% of 1 repetition maximum, early phase post-exercise Akt phosphorylation was increased only in the glycogen-loaded muscle, with no effect seen in the glycogen-depleted contralateral muscle. Glycogen inhibition also has been shown to blunt S6K activation, impair translation, and reduce the amount of mRNA of genes responsible for regulating muscle hypertrophy [1617]. In contrast to these findings, a recent study by Camera et al. [18] found that high-intensity resistance training with low muscle glycogen levels did not impair anabolic signaling or muscle protein synthesis (MPS) during the early (4 h) postexercise recovery period. The discrepancy between studies is not clear at this time.

Glycogen availability also has been shown to mediate muscle protein breakdown. Lemon and Mullin [19] found that nitrogen losses more than doubled following a bout of exercise in a glycogen-depleted versus glycogen-loaded state. Other researchers have displayed a similar inverse relationship between glycogen levels and proteolysis [20]. Considering the totality of evidence, maintaining a high intramuscular glycogen content at the onset of training appears beneficial to desired resistance training outcomes.

Studies show a supercompensation of glycogen stores when carbohydrate is consumed immediately post-exercise, and delaying consumption by just 2 hours attenuates the rate of muscle glycogen re-synthesis by as much as 50% [21]. Exercise enhances insulin-stimulated glucose uptake following a workout with a strong correlation noted between the amount of uptake and the magnitude of glycogen utilization [22]. This is in part due to an increase in the translocation of GLUT4 during glycogen depletion [2324] thereby facilitating entry of glucose into the cell. In addition, there is an exercise-induced increase in the activity of glycogen synthase—the principle enzyme involved in promoting glycogen storage [25]. The combination of these factors facilitates the rapid uptake of glucose following an exercise bout, allowing glycogen to be replenished at an accelerated rate.

There is evidence that adding protein to a post-workout carbohydrate meal can enhance glycogen re-synthesis. Berardi et al. [26] demonstrated that consuming a protein-carbohydrate supplement in the 2-hour period following a 60-minute cycling bout resulted in significantly greater glycogen resynthesis compared to ingesting a calorie-equated carbohydrate solution alone. Similarly, Ivy et al. [27] found that consumption of a combination of protein and carbohydrate after a 2+ hour bout of cycling and sprinting increased muscle glycogen content significantly more than either a carbohydrate-only supplement of equal carbohydrate or caloric equivalency. The synergistic effects of protein-carbohydrate have been attributed to a more pronounced insulin response [28], although it should be noted that not all studies support these findings [29]. Jentjens et al. [30] found that given ample carbohydrate dosing (1.2 g/kg/hr), the addition of a protein and amino acid mixture (0.4 g/kg/hr) did not increase glycogen synthesis during a 3-hour post-depletion recovery period.

Despite a sound theoretical basis, the practical significance of expeditiously repleting glycogen stores remains dubious. Without question, expediting glycogen resynthesis is important for a narrow subset of endurance sports where the duration between glycogen-depleting events is limited to less than approximately 8 hours [31]. Similar benefits could potentially be obtained by those who perform two-a-day split resistance training bouts (i.e. morning and evening) provided the same muscles will be worked during the respective sessions. However, for goals that are not specifically focused on the performance of multiple exercise bouts in the same day, the urgency of glycogen resynthesis is greatly diminished. High-intensity resistance training with moderate volume (6-9 sets per muscle group) has only been shown to reduce glycogen stores by 36-39% [832]. Certain athletes are prone to performing significantly more volume than this (i.e., competitive bodybuilders), but increased volume typically accompanies decreased frequency. For example, training a muscle group with 16-20 sets in a single session is done roughly once per week, whereas routines with 8-10 sets are done twice per week. In scenarios of higher volume and frequency of resistance training, incomplete resynthesis of pre-training glycogen levels would not be a concern aside from the far-fetched scenario where exhaustive training bouts of the same muscles occur after recovery intervals shorter than 24 hours. However, even in the event of complete glycogen depletion, replenishment to pre-training levels occurs well-within this timeframe, regardless of a significantly delayed post-exercise carbohydrate intake. For example, Parkin et al [33] compared the immediate post-exercise ingestion of 5 high-glycemic carbohydrate meals with a 2-hour wait before beginning the recovery feedings. No significant between-group differences were seen in glycogen levels at 8 hours and 24 hours post-exercise. In further support of this point, Fox et al. [34] saw no significant reduction in glycogen content 24 hours after depletion despite adding 165 g fat collectively to the post-exercise recovery meals and thus removing any potential advantage of high-glycemic conditions.

Crie uma conta ou entre para comentar

Você precisar ser um membro para fazer um comentário

Criar uma conta

Crie uma nova conta em nossa comunidade. É fácil!

Crie uma nova conta

Entrar

Já tem uma conta? Faça o login.

Entrar Agora
×
×
  • Criar Novo...